CENTRAL CIRCULATION BOOKSTACKS
The person charging this material is responsible for its renewal or its return to the library from which it was borrowed on or before the Latest Date stamped below. You may be charged a minimum fee of $75.00 for each lost book.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.

TO RENEW CALL TELEPHONE CENTER, 333-8400
UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

JUN 05 1998

When renewing by phone, write new due date below previous due date.
Game-Theoretic Models and the Role of Information in Bargaining

Contents

Abstract i
Introduction 1
The Classical Game-Theoretical Models 3
Previous Experimental Research 12
 Full Information 14
 Partial Information 20
Modification of the Classical Models 23
A New Experiment 27
 Design of the Experiment 28
 The Predictions of the Models 31
 Methods 33
 Results 36
Summary and Conclusions 38
Footnotes 42
Appendix: Proof of Theorem 4 45
References 48
Figure 1 54
Table 1 55
Table 2 56
Abstract

The primary purpose of this paper is to examine the behavioral implications and empirical testability of the game-theoretic models of bargaining which follow in the tradition begun by Nash (1950). The classical game-theoretic models are reviewed with particular attention to the assumptions which they make concerning the kinds of information shared by the bargainers. The experimental literature concerned with testing these models is also reviewed, with particular attention to the extent to which these experiments have conformed to the assumptions of the models they are designed to test. Some of the principal differences between the theoretical predictions and the results reported in these experiments seem to be due to questions concerning the information shared by the bargainers. A new game-theoretic model is presented, based on assumptions about information which more closely correspond to the conditions under which many of these experiments have been conducted. A new experiment which manipulates the appropriate kind of information was conducted. The results support the hypothesis that Nash's bargaining model has predictive value in situations which conform to its assumptions about information, but they also suggest that only a relatively narrow range of situations may conform completely to these assumptions. The results also support the hypothesis that the new model has predictive value in situations which conform to its assumptions.
Bargaining is a pervasive and important social phenomenon which has been studied from a multitude of perspectives by investigators from a variety of disciplines. The primary purpose of this paper is to examine the behavioral implications and empirical testability of the game-theoretic models of bargaining which follow in the tradition begun by Nash (1950), and which provide the theoretical basis for much of the work on bargaining done by economists. These models are intimately associated with expected utility theory, and they present formidable obstacles to laboratory experimentation. Largely for this reason, these models have not entered into the mainstream of bargaining research conducted by social psychologists. For instance, this family of models is not mentioned at all in the encyclopedic survey of experimental bargaining research by Rubin and Brown (1975), while Chertkoff and Esser (1976) state that

"Although these models may have been ignored to a certain extent because many social psychologists are not mathematically inclined, there are undoubtedly other reasons. First, the theories contain constructs, like utility, that are difficult to measure. Second, the models usually deal with broad concepts, like the utility of payoffs, without specifying in any detail what variables are related to them, and in what way."

Morley and Stephenson (1977) go one step further, and state that

"...these theories not only have not been subject to empirical tests but also do not have any obvious behavioral implications."

This paper begins with a review of the classical game-theoretic models of Nash and Raiffa, with particular attention to the mathematical condition which specifies the kind of information which the models assume can potentially influence the outcome of bargaining. Included in this review will be recent mathematical results which emphasize the extent to which the predictions of the models are dependent on this information condition.
The experiments which have been conducted to test these models will then be reviewed, with particular attention to the degree to which the conditions of the models have been successfully implemented and to the kinds of information which the various implementations make available to the bargainers. While the game-theoretic models are defined in terms of the expected utility of the bargainers, the experiments designed to test these models have mostly equated utility payoffs with monetary payoffs. We will argue that bargaining situations in which the players have common knowledge of one another's monetary payoffs make available a different quality of jointly-shared information than situations in which the players have common knowledge of one another's utility payoffs. This is because the players' utility payoffs are uniquely defined only up to independently normalized interval scales, while monetary payoffs are defined on a common absolute scale.

Situations in which the players know one another's monetary payoffs permit them to make comparisons which they otherwise could not make. A new mathematical result will be presented, characterizing a model of bargaining which differs from the classical models in its assumptions about information. This new model reflects the comparisons which can influence the outcome of bargaining when players know one another's monetary payoffs.

A new experiment will then be reported, which is designed to investigate the effect of this difference in the quality of the shared information. This experiment permits both the expected utility available to the players and the information which they share as common knowledge to be controlled and manipulated. The (preliminary) results
suggest that Nash's classical game-theoretic model is a good predictor of behavior in bargaining situations which make available precisely the right kind of information to the bargainers. These results also suggest, however, that relatively few bargaining situations provide precisely this information, and that the classical models require modification in situations which make available either too little or too much of various kinds of information.

The final section summarizes the conclusions reached in this paper, and considers directions for future research in which the interaction between theory and experiment seems likely to bear fruit.

The Classical Game-Theoretic Models

Before entering into a discussion of the bargaining models, we will very briefly consider the elements of expected utility theory on which these models depend. (The new experimental design presented later will also depend critically on the elements of utility theory reviewed here.) Von Neumann and Morgenstern (1944) were the first to demonstrate conditions on an individual's preferences which are sufficient so that his choice behavior over risky events is the same as if he were maximizing the expected value of a real valued function called his utility function. Given sufficient information about an individual's preferences, his utility function can be constructed, although this function is uniquely defined only up to an interval scale.

For simplicity, consider the case where the set of alternatives A contains elements a and c such that, for any alternative b in the set A, the individual in question likes the alternative a at least as well as b and b at least as well as c. Then if u is a utility function represent-
ing this individual's preferences over the set of alternatives A, it must have the property that \(u(a) > u(b) > u(c) \). Since \(u \) is defined only up to an interval scale, we may arbitrarily choose its unit and zero point, and in particular we may take \(u(a) = 1 \) and \(u(c) = 0 \). The problem of determining \(u(b) \) then becomes the problem of finding the appropriate value between 0 and 1 so that all those lotteries over alternatives which the individual prefers to \(b \) have a higher expected utility, and all those lotteries to which \(b \) is preferred have a lower expected utility. If we denote by \(L(p) = [pa;(1-p)c] \) the lottery which with probability \(p \) yields the alternative \(a \) and with probability \((1-p) \) yields the alternative \(c \), then the utility of participating in the lottery \(L(p) \) is its expected utility, \(pu(a) + (1-p)u(c) = p \). If \(p \) is the probability such that the individual is indifferent between \(b \) and \(L(p) \), then their utilities must be equal, and so \(u(b) = p \). Thus when we say that the utility of alternative \(b \) to a given individual is known, we mean that the probability \(p \) is known such that he is indifferent between having the alternative \(b \) for certain, or having the risky alternative \(L(p) \), which yields alternative \(a \) with probability \(p \) and \(c \) with probability \((1-p) \).

For instance consider an individual who is faced with a choice of receiving half a million dollars for certain, or participating in a lottery which will give him a million dollars with probability \(p \) and otherwise give him zero dollars. Then if we set his utility function for zero dollars at 0, and his utility for a million dollars at 1, determining his utility for half a million dollars means determining the probability \(p \) which would leave him indifferent between the lottery or the half million dollars. Most of us would
require p to be considerably greater than 1/2 before we would take
the lottery over the sure half million, which is to say that our
utility function is not linear in money, and that our utility for
half a million dollars is more than half way between our utility for
zero dollars and our utility for a million dollars. In what follows,
when we say that one individual knows another's utility for a given
event (e.g. a particular reward), we are not requiring that he know
any utility theory, but rather that he has sufficient knowledge of
the other's preferences to be able to determine an equivalent lot-
ttery of the sort just described. (For a more complete discussion,
see von Neumann & Morgenstern (1953), Herstein and Milnor (1953),
or Krantz, Luce, Suppes and Tversky (1971).)

Following Nash (1950) we can now define a pure bargaining game be-
tween two players to be a situation in which there is a set of feasible
outcomes, any one of which will be the final outcome of the game if it
is agreed to by both players. In the event that they fail to reach
agreement, some fixed disagreement outcome becomes the final outcome of
the game. That is, the rules of the game give each player a veto over
any outcome other than the disagreement outcome. The players are assumed
to be fully informed both about the rules of the game and about the
set of feasible outcomes.

Nash modelled such a game by a pair (S,d), where S is a subset
of the plane which contains d. He further required that the set S be
compact and convex, and that it contain at least one point x such that
x > d (i.e., x₁ > d₁ and x₂ > d₂).
The interpretation which he gave is that the set S is the set of feasible expected utility payoffs available to the players (i.e., if the players agree on a point $x = (x_1, x_2)$ in S, then players 1 and 2 receive a utility of x_1 and x_2 respectively), while $d = (d_1, d_2)$ denotes the utility payoffs to the players in the event of disagreement. Thus, under Nash's interpretation, the assumption that the players know the set of outcomes means that they know one another's utilities for each potential agreement. The condition that S is convex is thus appropriate if, for instance, any lottery between feasible agreements is also a feasible agreement. The condition that S is compact is justified if, for instance, the set of feasible outcomes consists of a finite number of distinct alternatives and the lotteries between them, while the requirement that S contains at least one point x such that $x > d$ insures that both players prefer some feasible agreement to the consequences of failing to reach agreement. That is, this latter requirement confines our attention to games in which both players can gain from reaching an agreement.

Having thus modelled the bargaining situations to which his theory is addressed, Nash modelled the bargaining process by a function (called a solution) which selects a feasible outcome for every bargaining game. That is, letting B denote the class of bargaining games (and \mathbb{R}^2 denote the plane), then a solution is a function $f : B \to \mathbb{R}^2$ such that for every game (S, d), $f(S, d)$ is an element of S. (Thus a solution models a bargaining process by specifying its outcome.) Nash proposed that a solution should possess the following properties.
Property 1. Pareto optimality: If \(f(S,d) = z \), then the set \(S \) contains no element \(x \) distinct from \(z \) such that \(x \geq z \).

The first property specifies that the bargaining process will not yield any outcome which both players find less desirable than some other feasible outcome.

Property 2. Symmetry: If \(f(S,d) = z \) and if \((S,d) \) is a symmetric game (i.e., if \(d_1 = d_2 \) and if for every \((x_1,x_2) \) in \(S \), \((x_2,x_1) \) is also contained in \(S \)), then \(z_1 = z_2 \).

The second property specifies that if the game \((S,d) \) makes no distinction between the players, then neither should the solution.

Property 3. Independence of irrelevant alternatives: If \((S,d) \) and \((T,d) \) are bargaining games such that \(S \) contains \(T \), and if \(f(S,d) \) is an element of \(T \), then \(f(T,d) = f(S,d) \).

The third property can perhaps best be understood to specify that the bargaining process in question yields, in some sense, the "best" outcome of \(z \) in the feasible set \(S \), and that the best outcome in \(S \) would also be the best outcome in any smaller set \(T \).

The fourth property relates to the fact that the game \((S,d) \) is interpreted as being defined in terms of the expected utility functions of the players, which are themselves defined only up to an interval scale, i.e., only up to an arbitrary choice of origin and unit. It states that if a game \((S',d') \) is derived from \((S,d) \) by transforming the utility functions of the players to equivalent representations of their preferences, then the same transformations applied to the outcome of the game \((S,d) \) should yield the outcome selected in \((S',d') \). That is, it states that the solution should depend only on the preferences of the players, and not on any arbitrary features of the utility functions which represent these preferences.
Property 4. Independence of equivalent utility representations: If \(f(S,d) = z \), and \((S',d')\) is a bargaining game related to \((S,d)\) by the transformations \(d' = (a_1 d_1 + b_1, a_2 d_2 + b_2) \),
\(S' = \{(a_1 x_1 + b_1, a_2 x_2 + b_2) | (x_1, x_2) \in S\} \) where \(a_1, a_2 > 0 \), then
\(f(S',d') = (a_1 z_1 + b_1, a_2 z_2 + b_2) \).

Sometimes this property goes by the alternate name "independence of positive linear transformations of the payoffs." Since the choice of origin and scale for each player's utility function is unrelated to that of the other player's, this property essentially specifies that the numerical levels of utility assigned to each outcome have no standing in the theory, and no comparisons of the numerical utility payoffs received by the two players can play any role in determining the outcome of bargaining.

Nash proved the following remarkable theorem.

Theorem 1. (Nash, 1950): There is a unique solution which possesses properties 1-4. It is the solution \(F = F \) defined by
\[F(S,d) = z \text{ such that } z > d \text{ and } (z_1 - d_1)(z_2 - d_2) > (x_1 - d_1)(x_2 - d_2) \]
for all points \(x \) in \(S \) distinct from \(z \) such that \(x > d \).

That is, in the region of \(S \) yielding positive gains to both players, Nash's solution \(F \) selects the unique point \(z \) which maximizes the geometric average (i.e. the product) of the gains available to the players, as measured against their disagreement payoffs. Furthermore, the solution \(F \) possesses properties 1-4, and it is the only solution which does.

While the four properties which Nash considered are sufficient to characterize the solution \(F \), there are of course other properties of the solution which may be useful to consider. One of the most elementary of these is that, as we have noted, Nash's solution always yields each
player a positive gain over his disagreement point; i.e., it possesses the following property.

Property 5. Strong individual rationality: \(f(S,d) > d \).

This property is elementary in the sense that it might reasonably be expected to be descriptive of any bargaining process which results in agreement, since neither player has any incentive to accept an agreement which does not yield him a higher utility than he can achieve without agreement. (Recall that the payoffs are assumed to be in terms of utility, which completely summarize a player's preferences.)

It has recently been shown (Roth (1977a), (1978)) that if property 5 is incorporated into the characterization of a solution, then the elimination of property 1 causes no change in Nash's conclusion, while the elimination of property 2 leads to a straightforward generalization of Nash's result. Specifically, we have the following two theorems.

Theorem 2. (Roth, 1977a): Nash's solution \(F \) is the unique solution which possesses properties 2-5.

Theorem 3. (Roth, 1978): Any solution which possesses properties 3-5 is of the form \(f(S,d) = z \) such that \(z > d \) and

\[
(z_1-d_1)^p(z_2-d_2)^q > (x_1-d_1)^p(x_2-d_2)^q
\]

for all points \(x \) in \(S \) distinct from \(z \) such that \(x > d \), where \(p \) and \(q \) are fixed positive numbers which sum to 2.

Theorem 3 says that if we drop the requirement of symmetry, then the resulting solution must be one which maximizes the weighted geometric average of the gains available to the players, with weights \(p \) and \(q \).

Thus the only role of symmetry in Nash's theorem is to set \(p=q=1 \), which causes the solution to weight equally the gains of both players. Dropping symmetry permits the solution to reflect factors such as differential
bargaining ability between players which are outside the formal description of the game, but it leaves the form of the solution unchanged. (Asymmetric Nash solutions are also considered, from somewhat different perspectives, by Harsanyi and Selten (1972), and Kalai (1977a).)

Taken together, theorems 2 and 3 indicate that Nash's result depends hardly at all on Pareto optimality or symmetry, but relies almost entirely on properties 3 and 4, the two independence properties. It is therefore towards these two properties that we will direct our attention.

As already noted, property 4, independence of equivalent utility representations, specifies that the solution may not make use of any information about the payoffs to the players which depends on the origin or unit of those payoffs. The other independence property, independence of irrelevant alternatives, imposes restrictions of a different sort. Rather than reflecting limitations on the information contained in the payoffs, it restricts the kinds of comparisons which the bargaining process may employ. Given a fixed disagreement point, a bargaining process which possesses property 3 essentially proceeds by establishing a means to make binary comparisons between pairs of alternatives, and choosing the "best" alternative, in terms of this comparison, from any feasible set. That is, the comparison between any two particular alternatives is determined independently of the feasible set in which they are contained.

Of the four properties which Nash suggested, property 3 has been the subject of the most criticism and discussion (cf. Luce and Raiffa, 1957; Roth, 1977b). Other solutions have been proposed which possess all of Nash's properties with the exception of property 3, and of these
alternative solutions, the one which has received the most attention is one of several originally proposed by Raiffa (1953). Raiffa's solution G is defined as follows.

For any game (S,d), let the ideal point $I(S,d) = \bar{x} = (\bar{x}_1, \bar{x}_2)$ be defined by $\bar{x}_1 = \max\{x_1 | x \geq d \text{ and } x = (x_1, x_2) \text{ is contained in } S\}$, $\bar{x}_2 = \max\{x_2 | x \geq d \text{ and } x \text{ is contained in } S\}$. Then \bar{x}_1 and \bar{x}_2 represent the maximal payoffs available to players 1 and 2 respectively in the individually rational region of S. The solution G selects the maximal feasible point on the line joining d to \bar{x}; i.e., $G(S,d) = z$ is the Pareto optimal point such that $(z_1-d_1)/(z_2-d_2) = (\bar{x}_1-d_1)/(\bar{x}_2-d_2)$. That is, the solution G chooses the point z which maximizes the gains of the players subject to the restriction that the players' actual gains are in the same proportion as their maximum potential gains. It is easy to verify that the solution G possesses properties 1, 2, and 4, but does not possess property 3. That is, the feasible points which determine $I(S,d)$ are not "irrelevant" to Raiffa's solution in the sense which they are to Nash's solution.

Kalai and Smorodinsky (1975) have characterized G as the unique solution which possesses properties 1, 2, 4, and an additional property called individual monotonicity. The solution G has also been independently proposed and studied by other investigators; e.g., Crott (1971) anticipated the solution on the basis of an experimental study (reviewed below) while Butrim (1976) studied the solution axiomatically. Unlike Nash's solution which can be generalized in a straightforward way to the case of pure bargaining games among more than two players, it can be shown (Roth, 1979b) that the solution G does not generalize to the case of more than two players.
Before proceeding to a review of the experimental literature concerning these models, it should be mentioned that subsequently Nash (1953) and Raiffa (1953) also analysed certain specialized two-stage bargaining situations, in which it is possible in the first stage for bargainers to choose threats and make irrevocable commitments which bind them to carry out their threats should no agreement be reached in the second stage. The analysis of these "variable threat" situations concentrates on the question of what threats should be chosen by the players in the first stage, under the assumption that these threats will determine the disagreement outcome in the second stage for a bargaining process of the kind we have already considered, modelled by Nash's (or Raiffa's) solution. The conclusions reached concerning the optimal choice of threats in such situations depend critically on the assumption that the commitment to carry out a threat is irrevocable, as well as on the assumption that bargaining in the second stage can be modelled by the solutions considered earlier in this section. The pure bargaining games we have been considering are often called "fixed-threat" games, to distinguish them from the two-stage variable threat situations by indicating that the disagreement outcome is fixed.

Previous Experimental Research

The scope of this review will be limited to investigations which explicitly sought to test propositions based on one of the game-theoretic models of bargaining we have been considering. It will not attempt to include results of experiments which were conducted without any reference to game-theoretic models, but which nevertheless might have some relevance
to them. Most of the experiments considered here have not previously been considered in reviews either of the more general literature on bargaining (e.g., Chertkoff and Esser, 1976; Morley and Stephenson, 1977; Rubin and Brown, 1975) or of game-theoretic models in general (e.g., Murnighan, 1978).

Although a number of the experiments testing game-theoretic models of bargaining have been concerned not only with the original "fixed threat" pure bargaining games but also with the variable-threat games, we will concentrate on the former models only, for two reasons. First, the fixed-threat models are more basic than the variable-threat models, since the latter models depend in a critical way on the validity of the former. Second, most of the experiments devoted to testing the variable-threat models do not implement any procedures to make threats irrevocable in the required way, and so these experiments tend not to be closely related to the theoretical models they are designed to test.

Since any bargaining situation having a disagreement outcome which each bargainer can enforce can be described as a pure bargaining game, the conditions of the formal models leave room for a wide variety of experimental implementations. However, since the bargaining theories under consideration are designed to model cooperative bargaining behavior, it seems reasonable to expect that they would be most descriptive of the result of bargaining conducted under conditions which permit at least limited communication. Indeed, with few exceptions, the experiments designed to test these theories have been conducted under what Chertkoff and Esser (1976) call conditions of explicit bargaining, in that they permit communication, compromise, and the exchange of provisional offers and counter-offers.
With some exceptions which will be noted, the experiments considered in this section involved bargaining over monetary payoffs, sometimes through the intermediary step of bargaining over "points" or "chips" with monetary value. These experiments will be organized here according to the information which was made available to the bargainers: full information to both bargainers about the payoffs to both bargainers, or full information to each bargainer about his own payoffs and partial information about the other bargainer's payoffs. Most but not all of the experiments to be considered can be classified into one of these categories and the exceptions will be noted.

Full Information

A straightforward experiment was conducted by Nydegger and Owen (1975), who proposed to test each of Nash's properties by observing the results of a series of simple bargaining situations. A secondary purpose of their experiment was to compare the predictive value of Nash's solution with Raiffa's solution. In their experiment, 30 pairs of undergraduates each participated in a single bargaining encounter involving the distribution of monetary payoffs, about which they were fully informed. Nydegger and Owen interpreted the monetary payoffs in these games as being identical to the utility received by the bargainers. In each of the three conditions of the experiment, a different game was played, chosen to test Nash's properties. The bargaining was conducted verbally and face-to-face, with the bargainers seated together at a table.
Nydegger and Owen interpret their results as supporting the proposition that bargaining behavior is symmetric, Pareto optimal and independent of irrelevant alternatives, while contradicting the proposition that it is independent of equivalent utility representations. Specifically, in each of their games, the bargainers reached agreements which gave them equal monetary payoffs. This supports the conclusion that, in bargaining for money with full information about payoffs, the scale of the monetary payoffs available has an effect on the agreements reached, and that comparison of the monetary payoffs received by each player plays a role in determining the outcome. A remarkable feature of these results is the fact that, within each condition, the identical agreement was reached by each pair of bargainers. Even if this is primarily due to the social forces acting on undergraduate subjects when placed in an artificial situation to bargain face-to-face for negligible amounts of money, it at least indicates that the information available to the bargainers was sufficient to enable them to identify a particular salient outcome.

Another experiment designed to test Nash's properties was conducted by Rapoport, Frenkel, and Perner (1977). Like the previous experiment, it was conducted for monetary payoffs about which the bargainers were given full information, and over which they bargained face-to-face. This experiment was designed to test three of Nash's four properties: symmetry, Pareto optimality and independence of equivalent utility representations. Participants were randomly paired, and bargained in 24 games against the same opponent, in games chosen to test the three properties. Independence of irrelevant alternatives was not tested. One goal of
this experiment was to consider differences between the variable-threat bargaining situation and the classical fixed-threat situation, but we will be concerned here only with the condition concerning the classical bargaining situation, with a fixed disagreement outcome.

Bargaining was conducted with the bargainers seated face-to-face on either side of a partition which allowed them to see one another and talk freely, but which also allowed them to write privately. Following a period of unstructured verbal bargaining, each bargainer separately wrote down his demand. There were two iterations of this procedure, after which, if the demands were compatible, each player received the weighted average he had demanded. Otherwise each player received his disagreement payoff.

The principle conclusion drawn by the authors is that the bargaining process does not obey the property of independence of equivalent utility representations. The authors write (p. 89) "...invariance of the solution with respect to positive linear transformations on the payoffs is grossly violated." As in the previous study, they account for this by observing that, to a large extent, the bargainers make interpersonal comparisons of the payoffs.

Another conclusion drawn from this study is that the bargaining process shows "significant departures from Pareto optimality." The difference between this and the previous study in this respect may be primarily due to the different procedure by which agreements were reached. Although both studies permitted unrestricted verbal bargaining, the actual final demands in this study were made independently. This seems to have resulted in an increase both in the number of disagreements and
in the amount of hedging of demands to insure compatibility, both of which contribute to departures from Pareto optimality.

Some departures from symmetry were observed as well, although these did not reach significance. As an ordinal measure, it was found that Nash's solution was a good predictor of which player would come out ahead in a given game, even though the agreements reached could be quite far from those predicted by Nash's solution.

The results of this study are consistent with others conducted by its senior author and his colleagues, reported in Rapoport and Perner (1974) and Rapoport, Guyer, and Gordon (1976). Those studies differed from the one just considered in that they did not attempt to test Nash's properties separately, nor did they employ actual monetary rewards. Also, the rules under which bargaining was conducted were somewhat more restrictive than in the study just considered. However, players in both studies were given full information about the payoffs. The principle conclusion of these studies is that the outcome of bargaining is heavily influenced by various "salient" outcomes involving interpersonal comparisons, and that, while Nash's solution is useful as a predictor of which player gets the larger payoff, there is a strong tendency for agreements to be closer to an equal division than would be predicted by Nash's solution.

Both the procedures used and the conclusions reached in the studies by Rapoport and his colleagues are similar to those in the study conducted by O'Neill (1976), who also investigated both fixed and variable threat bargaining, without, however, attempting to test Nash's properties separately. In O'Neill's study, participants played 11 games
against the same opponent, all involving the division of a fixed sum of money, with full information. In each game a three-minute period of face-to-face negotiation was allowed, after which the players separately wrote down their bids. Comparison of the bids for compatibility followed, with the players each receiving their share of the sum to be divided if agreement had been reached, and otherwise receiving their disagreement payoff. O'Neill concluded that the Nash solution is highly correlated with the outcome of these games, so that it serves as a good predictor of the relative advantage which a player enjoys in one game as opposed to another. However, as in the previous studies, he also noticed (p. 100) "a systematic shift for all games toward the equal-split outcome."

Other studies have observed the same kind of shift in bargaining over monetary payoffs with full information. For instance, in a famous series of experiments in which the amount of information available to the players was an experimental variable, Siegal and Fouraker (1960; see also Fouraker and Siegal, 1963) found that agreements in a bilateral monopoly (one buyer, one seller) tended towards equal profit, with agreements approaching equality most closely under the conditions of fullest information about payoffs. Their studies (which were concerned only incidentally with Nash's solution), involved bargainers trying to reach price and quantity agreements on the sale of some commodity, communicating via written numerical bids under conditions of full information, partial information, or asymmetric information (one player informed, one uninformed) about the monetary payoffs which each player would receive from any agreement. A similar conclusion about the effect of varying the amount of available information was reached by Crott
and Montmann (1973), and by Felsenthal (1977), who studied a bargaining situation in which there was a discrete (rather than a convex) set of feasible monetary payoffs. Messe (1971) also considered bargaining with full information over a discrete set of feasible monetary payoffs, and in the symmetric condition of his experiment found a strong tendency towards equal payoffs. Komorita and Kravitz (1979) reached a somewhat similar conclusion, in a study whose experimental variables were differences in disagreement payoffs, magnitude of the prize, and group size. They studied pure bargaining (each bargainer could enforce the disagreement outcome) involving groups of 2, 3, or 4 bargainers negotiating over the distribution of a fixed number of "points."

Two more studies involving bargaining games with full information about payoffs are not directly comparable to those of the other studies considered here because they were conducted in such a way as to permit no communication of any sort between players. Both Stone (1958) and Crott (1971) presented participants with a set of games whose feasible set was portrayed graphically. Each participant was instructed to independently mark his demand on the graph, with the understanding that the graphs marked by the player and his opponent would subsequently be compared to see if their demands were compatible, which would determine whether or not agreement had been reached. In Stone's experiment, participants were told to make their demands on a series of games, and were told that their opponent had already made his demands. In fact the opponent was imaginary. The games were defined in terms of monetary payoffs, but the monetary awards were imaginary, although participants were told that those whose imaginary winnings
fell in the top 25% would receive a prize of one dollar. Stone was primarily interested in the degree to which players hedged their demands, and he reported a correlation between "cautious" behavior in one game and in another, across a variety of games. In Crott's experiment, the games were also defined in terms of the feasible set of monetary payoffs. After each participant had indicated his demands in a series of games, a random pairing of bargainers in a subset of these games determined the actual cash payoffs. Crott found that the ratio of each player's maximum feasible payoffs was a good predictor of the ratio of their demands. (For games whose disagreement point is the origin, the solution G predicts payoffs in the same ratio.) A related investigation by the same author into different aspects of bargaining is reported in Crott (1972a).6

Taken together, the results of the bargaining experiments in which the bargainers had full information about one another's monetary payoffs are consistent with the proposition that comparison of players' payoffs plays a part in determining the outcome of bargaining. In view of the fact that the game-theoretic models under consideration are stated in terms of utility rather than monetary payoffs, the question arises whether the experimentally observed comparisons involve money only, or whether they involve comparisons of the players' utility in some deeper way.

Partial Information

Two experiments have been reported which attempt to address this issue by studying bargaining situations in which the bargainers negotiate
over the distribution of chips while having only partial information about the value of those chips, in that each bargainer knows the value of the chips to himself but not to his opponent. In situations of this sort, bargainers cannot directly compare the value of their payoffs, since this information is not common knowledge. The two studies which have been conducted using this procedure, by Nydegger (1977) and Heckathorn (1978), illustrate the difficulty of implementing a study of this kind in such a way that it conforms to the assumptions of the models it is intended to test.

Nydegger's study, which is also reported in Nydegger (1978), was modelled on the study by Nydegger and Owen (1975) and was intended both to test Nash's four properties and to compare the predictive value of Nash's and Raiffa's solutions in bargaining with partial information about the payoffs. In order to establish the payoff scales, each individual was asked to select 10 items he would like to have from a list of 20 items from the campus store, and to rank them in order of preference. He was then told to assign the most preferred item a value of "100 units", and to assign lower values to the other items, "with the only constraint being to preserve the ordinality of the rankings." Participants were then brought together to bargain for chips which were assigned values in "units," with the understanding that a player who earned a certain number of units in bargaining would then receive the most preferred item which he had assigned not more than that number of units.

The difficulty in interpreting the results of this experiment arises from the fact that the actual payoffs available to the parti-
Participants consisted of a discrete set of prizes. Thus, for instance, if one of the bargainers had valued one of his potential prizes at 55 units and the next most desirable prize at 40 units, then he would presumably be indifferent between receiving anywhere from 40 to 54 units, since any agreement in this range would yield him the same prize. Thus if the players are assumed to be motivated by the prizes, the "units" cannot be taken to represent the utilities of the players.

Heckathorn's (1978) study was also intended to study bargaining under conditions of partial information, and to compare Nash's solution with Raiffa's. However, the rules under which the bargaining was conducted did not correspond to those of a pure bargaining game, since there was no disagreement outcome which could be enforced by both players. A further difficulty encountered in this paper is that Raiffa's solution is identified by an incorrect formula, which is not independent of changes in the origins of the players' payoff scales.

Partial information of a different sort was considered in an experiment by Hoggatt, Selten, Crockett, Gill, and Moore (1975), motivated by a theoretical model based on Nash's solution, proposed by Harsanyi and Selten (1972). In the game played in this experiment, participants bargained over the distribution of 20 "money units" whose value (10 cents) was known to both of them. In the event of disagreement, each player received 0 units. What each player did not know was whether his opponent had a "high cost" of 9 units or a "low cost" of 0 units which would be subtracted from his winnings following any agreement. Before the game commenced, each players' cost was determined by a random process which gave him a 50% chance of having high or low
cost. Each player was informed only of the result of his own random process, so that when the bargaining commenced, each player knew his own cost and the probability distribution which determined his opponent's cost. (Situations of this type are called games of incomplete information.) After equating the utility of the players with their monetary payoffs, it was found that there was substantial qualitative agreement between aspects of the experimental results and predictions of the theory, although agreements at an equal division of the 20 units were the most common, even in the case where a player with low cost bargained against a player with high cost.

Modification of the Classical Models

The experimental evidence considered in the previous section reveals some considerable discrepancies between observed experimental results and the predictions of the game-theoretic models. In particular, the property of independence of equivalent utility representations was consistently violated in studies in which each player knew the monetary value of his opponent's payoffs.

There is thus ample support for the proposition that comparison of the monetary payoffs available to the bargainers plays a role in determining the outcome of bargaining in situations which make available to both bargainers the information necessary to make such comparisons. In order to design a descriptive theory of bargaining for situations in which the participants know each other's monetary payoffs (rather than their utility payoffs), it is therefore necessary to reexamine those aspects of the classical models which deal with the nature of the payoffs and the information which they convey. In this section, we will
consider a new model which allows for the comparison of the payoffs between players.

When bargaining games \((S,d)\) defined in terms of the feasible utility payoffs were considered, it was natural to impose the restriction that the set \(S\) be convex. However, when the game \((S,d)\) is defined in terms of monetary payoffs this restriction is no longer natural, and so this section will be concerned with games from a larger class than the class \(B\) considered so far. Let \(B^*\) denote the class of games \((S,d)\) where \(S\) is a compact (but not necessarily convex) subset of the plane containing the point \(d\) and at least one point \(x\) such that \(x > d\). For simplicity we will also require that the Pareto optimal subset of \(S\) be connected, as would be the case in any game in which the bargaining concerns the distribution of a divisible commodity. (When a game \((S,d)\) is considered as a member of the class \(B^*\), the set \(S\) is to be interpreted as the set of feasible monetary payoffs, and the point \(d\) as the monetary payoffs resulting from disagreement.)

A model of bargaining in such games will be a solution defined on the class \(B^*\). To be consistent with the available experimental evidence, this solution should possess properties 1-3, but not property 4. Specifically, it should incorporate information of a kind which is precluded by property 4, about the relative payoffs which the players receive at any agreement. It will be instructive to consider the effect of replacing property 4 with the following property, which in certain respects can be considered almost the opposite of property 4.
Property 4': Independence of ordinal transformations preserving interpersonal comparisons: Let \((S,d)\) and \((S',d')\) be games in \(B^*\) such that \(d'_i = t_i(d_1,d_2)\) for \(i = 1,2\) and \(S' = \{(t_1(x_1,x_2), t_2(x_1,x_2)) | (x_1,x_2) \in S\}\) where \(t = (t_1,t_2)\) is a transformation \(t:S \rightarrow R^2\) such that for all \(x,y\) in \(S\) and \(i = 1,2\);

(i) \(t_i(x_1,x_2) \geq t_i(y_1,y_2)\) if and only if \(x_i \geq y_i\) and
(ii) \(t_1(x_1,x_2) - t_1(d_1,d_2) \geq t_2(x_1,x_2) - t_2(d_1,d_2)\) if and only if \(x_1 - d_1 \geq x_2 - d_2\).

Then \(f_i(S',d') = t_i(f(S,d)).\)

This property states that if a game \((S',d')\) is derived from \((S,d)\) via a transformation \(t\) (of feasible payoff vectors) which (i) preserves each player's ordinal preferences and (ii) preserves information about which player makes larger gains at any given payoff, then the same transformation applied to the final agreement of the game \((S,d)\) should yield the final agreement of the game \((S',d')\). That is, it states that the solution should depend only on the ordinal preferences of the players, and on the ordinal comparision of the payoffs to the players at any given agreement, and not on any other features of the payoffs. A solution which possesses property 4' thus differs from a solution which possesses property 4 in two ways: (i) it treats the feasible payoffs to a player as ordinal rather than interval data (i.e. it reflects the direction of each player's preferences, but not "how much" he prefers one payoff to another); and (ii) it permits ordinal comparisons of one player's payoffs to those of the other player, rather than precluding all such comparisons.

One solution which possesses property 4' is the solution \(f=E\) which selects the outcome \(E(S,d) = z\), where \(z\) is the Pareto optimal
point in \(S \) such that \(\min\{z_1-d_1,z_2-d_2\} > \min\{x_1-d_1,x_2-d_2\} \) for all Pareto optimal points \(x \) in \(S \) distinct from \(z \). The solution \(E \) picks the Pareto optimal point in \(S \) which maximizes the minimum gains available to the players. The letter \(E \) was chosen to reflect the fact that this solution selects the outcome which gives both players equal gains, whenever there exists a Pareto optimal outcome with this property. In any event, the solution \(E \) always selects the Pareto optimal point which comes closest to giving the players equal gains.

Just as Nash's solution is uniquely characterized by properties 1, 2, 3, and 4, it turns out that the equal gains solution \(E \) can be characterized by properties 1,2,3, and 4'. That is, we can state the following new result.

Theorem 4: The equal gains solution \(E \) is the unique individually rational solution which possesses properties 1,2,3, and 4'.

The proof of this theorem is given in the appendix.

The equal gains solution \(E \) can thus be thought of as differing from Nash's solution only in the kind of information which is assumed to determine the outcome of bargaining. Property 4 permits Nash's solution to be sensitive to the intensity of each players' preferences for the various potential outcomes (as measured by von Neumann-Morgenstern utility functions), but requires it to be insensitive to any comparison between players. Property 4', on the other hand, permits the equal gains solution \(E \) to be sensitive to comparisons of the payoffs the bargainers get at any given outcome, and to be sensitive to each players' ordinal preferences over different outcomes, but prevents it from being sensitive to the intensity of their preferences over different outcomes.
The experiment described in the following section is designed to help distinguish the effects of those two kinds of information.

A New Experiment

The experiment reported here is designed to test the hypothesis that the information which influences the outcome of bargaining is to a large extent the information which is shared by both bargainers, as opposed to information available to only one of the bargainers. We will examine the hypothesis that Nash's solution is descriptive of bargaining situations in which each player does know his opponent's von Neumann-Morgenstern utility for each outcome but does not know his opponent's monetary payoff. We will also examine the related hypothesis that, when the players know both their opponents' monetary payoffs as well as their utilities, the outcome of bargaining will be influenced by interpersonal comparisons, in the direction of equal gains. Simply put, we will be examining the hypothesis that Nash's solution is descriptive of bargaining when the players share the sort of information assumed by property 4, and that property 4 (and consequently Nash's solution) fails to be descriptive when the shared information is of a different sort. (The specific implications of these hypotheses for our experiment will be described in detail following the description of the experimental design.)

None of the experiments reviewed earlier necessarily permit the players to know one another's von Neumann-Morgenstern expected utility for an agreement, since even the experiments conducted under conditions of full information revealed only the monetary payoffs available. To
the extent that a player has a utility function which is not linear in money, this utility function is not known to the player's opponent (nor to the experimenter). At the same time, in giving each player information about his opponent's monetary payoffs, these experiments gave the players information about their opponent's payoffs which is not contained in the players' utility functions, and which is defined on a common absolute scale, rather than on independently normalized interval scales. The fact that observed agreements tended towards equal payoffs makes clear that this information played a role in the bargaining, since the comparisons necessary to determine equality are not well-defined on independently normalized interval scales.

Thus the experiments reviewed above provided less information of one kind (about the utilities) and more information of another kind (about the monetary awards) than is assumed to be relevant by the classical game-theoretic models being tested.

The experiment described below is designed to provide participants with the required information about their opponent's utility for the available payoffs, and to permit information about the underlying monetary payoffs to be provided or withheld as an experimental variable.

Design of the Experiment

Recall that knowing an individual's expected utility for a given agreement is exactly equivalent to knowing what lottery he thinks is as desirable as that agreement. Thus in a bargaining game whose feasible agreements are the appropriate kind of lotteries, knowing the utilities of the players at a given agreement is equivalent to simply knowing the lottery they have agreed on.
In each game of this experiment, therefore, players bargained over the probability that they would receive a certain monetary prize, possibly a different prize for each player. Specifically, in each of four games played under two information conditions, players bargained over how to distribute "lottery tickets" which would determine the probability that each player would win his personal lottery (i.e. a player who received 45% of the lottery tickets would have a 45% chance of winning his specified monetary award, and a 55% chance of winning nothing). In the event that no agreement was reached, each player received nothing. In the full information condition, each player was informed of the value of his own potential prize and of his opponent's potential prize; in the partial information condition, each player was informed only of the value of his own prize.

Each player played four games, in random order, under one of the information conditions, against different opponents. Players were allowed to communicate freely by teletype, but they were unaware of the identity of their opponents. In game 1, no restriction was placed on the percentage of lottery tickets which each player could receive, and both players had the same potential payoff of $1.00. Game 2 was played with the same potential payoffs as game 1, but one of the players (player 2) was restricted to receive no more than 60% of the lottery tickets. Game 3 was played with the same rules as game 1, but with different monetary payoffs for the two players: $1.25 for player 1, and $3.75 for player 2. Game 4 was played under the same rules as game 2, with the same prizes as game 3 (see Figure 1).

Figure 1 about here
In order to interpret the set of feasible outcomes in each of these games in terms of each player's utility function for money, recall that if we consider each player's utility function to be normalized so that his utility for receiving his own prize is 1, and his utility for not receiving it is zero, then his utility for any lottery between those two alternatives is the probability of winning the lottery.

Note that we are considering the feasible set of utility payoffs to be defined in terms of the utility function of each player for the lottery which he receives, independently of the bargaining which has taken place to achieve this lottery, and even independently of the lottery which his opponent receives. In doing so, we are taking the point of view that, while the progress of the negotiations may influence the utilities of the bargainers for the agreement eventually reached, the description of any effect which this has on the agreement reached belongs in the model of the bargaining process, rather than in the model of the bargaining situation. Considerable confusion in the literature has resulted from attempts to interpret bargaining models in terms of the players' utilities for outcomes after the bargaining has ended, since no bargaining model can be falsified by experimental evidence if, after an outcome has been chosen, the utilities of the players can be interpreted as having changed in whatever way is necessary to be consistent with the model. In order to have predictive value, bargaining theories must be stated in terms of parameters which can be measured independently of the phenomena which the theories are designed to predict, and it is for this reason
that we consider the utilities which define the game, in either information condition, to be simply each player's utility for money (cf. the passage from Chertkoff and Esser (1976) quoted at the beginning of this paper).

The Predictions of the Models

Since the monetary awards available to the players in each game are the same under both information conditions, so are the feasible utility payoffs. Since the classical game theoretic models depend only on the feasible set of utility payoffs (i.e., since they are defined on the class B of games), both Nash's solution and Raiffa's predict no difference between the two information conditions.

Property 1, Pareto optimality, predicts that, in all four games, agreements will be reached, and the agreements will divide all of the lottery tickets. Property 2, symmetry, predicts that, in game 1, the players will receive equal percentages of the lottery tickets. (Thus properties 1 and 2 together imply a 50-50 split in game 1.) Property 3, independence of irrelevant alternatives, then predicts that game 2 will reach the same outcome as game 1 (since the restriction in game 2 does not exclude the 50-50 split). Property 4, independence of equivalent utility representations, predicts that game 3 will have the same outcome as game 1, and game 4 will have the same outcome as game 2, since these games differ only in the size of the monetary prizes, which affects only the scale of the utility functions.

Taken together, Properties 1-4 thus predict a 50-50 split in all four games. Since Nash's solution F possesses all four properties, this is the prediction of Nash's solution. In what follows, it will sometimes
be convenient to discuss the predictions of the models in terms of the quantity D defined as the percentage of lottery tickets received by player 2 minus the percentage of lottery tickets received by player 1. The prediction of Nash's solution is that D will equal 0 for all four games, under both information conditions.

Raiffa's solution G does not possess property 3, and so it predicts a different outcome for game 2 than for game 1; like Nash's solution, it predicts that game 1 will result in a 50-50 split, but in game 2 it predicts that players 1 and 2 will receive 62.5% and 37.5% of the lottery tickets, respectively. Since it possesses property 4, it predicts that game 3 should have the same outcome as game 1, and game 4 should have the same outcome as game 2. Thus Raiffa's solution predicts that D will equal 0 for games 1 and 3, and that it will equal -25 for games 2 and 4, under both information conditions.

Our principal experimental hypothesis is that only in the partial information condition will the observed outcomes be consistent with property 4, since property 4 specifies that only the utility functions of the players should be relevant to the outcome, and this is precisely the information shared by the players in the partial information condition. Thus games 1 and 3 should yield the same outcome in this condition, as should games 2 and 4. It would be consistent with the results of most of the studies reviewed earlier if the observations were consistent with properties 1-3 as well, and so our hypothesis for this condition is that Nash's solution will be descriptive.

In the full information condition, the principal hypothesis is that the observations will continue to be consistent with properties 1-3,
but will no longer be consistent with property 4: i.e., game 1 will yield a different outcome than game 3, and game 2 will yield a different outcome than game 4. In this condition, the players share both the information about one another's utility specified by property 4, as well as the information about each other's monetary payoffs needed to make the kind of comparisons specified by property 4'. Since property 4 yields Nash's solution F when combined with properties 1-3, while property 4' yields the equal gains solution E, our hypothesis is that, in this condition, the observations will tend to fall between those predicted by the two solutions. (Note that the results of the earlier studies conducted under conditions of full information also tended to fall between the predictions of these two solutions.) The equal gains solution, defined on the expected monetary payoffs (rather than the expected utility payoffs), predicts that the players will each receive 50% of the lottery tickets in games 1 and 2, and that in games 3 and 4 players 1 and 2 will receive 75% and 25%, respectively. (This would result in an expected monetary payoff of 50 cents to each player in games 1 and 2, and 94 cents to each player in games 3 and 4.)

The experimental hypotheses are therefore that, in the full information condition, D will equal 0 for games 1 and 2, and be between 0 and -50 for games 3 and 4. In the partial information condition, D should equal 0 for all four games.

Methods

Each participant was seated at a visually isolated terminal of a computer-assisted instruction system developed at the University of Illinois, called PLATO, whose features include advanced graphic displays
and interactive capability. The experiment was conducted in a room containing over 70 terminals, most of which were occupied at any given time by students uninvolved in this experiment. No more than 9 of the terminals were used for the experiment at any time (eight terminals occupied by participants, and one terminal used by the experimenter to monitor the proceedings). Participants were seated by the experimenter in order of their arrival at scattered terminals throughout the room, and for the remainder of the experiment they received all of their instructions, and conducted all communication, through the terminal.

The subject pool was from an introductory business administration course mostly taken by college sophomores. No special skill or experience was required for participation. Pretests were run with the same subject pool to make sure that the instructions to participants were clear and easily understandable.

Background information such as a brief review of probability theory was first presented. The main tools of the bargaining were then introduced: these consisted of sending messages or sending proposals. A proposal was a pair of numbers, the first of which was the sender's probability of receiving his/her prize and the second was the receiver's probability. The use of the computer enabled any asymmetry in the presentation to be avoided. PLATO also computed the expected value of each proposal and displayed the proposal on a graph of the feasible region. After being made aware of these computations, the bargainer was given the option of cancelling the proposal before its transmittal. Proposals were said to be binding on the sender, and an agreement was reached whenever one of the bargainers returned a proposal identical to the one he had just received.
Messages were not binding. Instead, they were used to transmit any thoughts which the bargainers wanted to convey to each other. To insure anonymity, the monitor intercepted any messages that revealed the identity of the players. In the partial information condition the monitor also intercepted messages containing information about the available prizes. The intercepted message was returned to the sender with a heading indicating the reason for such action.

To verify their understanding of the basic notions, the subjects were given some drills followed by a simulated bargaining session with the computer. As soon as all the participants finished this portion of the experiments, they were paired at random and the bargaining started.

At the end of 12 minutes or when agreement was reached (whichever came first), the subjects were informed of the results of that game and were asked to wait until all the other bargainers were finished. For the subsequent game there were new random pairings, and the bargaining resumed. The cycle continued until all four games were completed. At no point in the experiment were the players aware of what the other participants were doing, or of the identity of their opponents.

The bargaining process consisted of the exchange of messages and proposals, and participants were instructed that "your objective should be to maximize your own earnings by taking advantage of the special features of each session." Only if the bargainers reached agreement on what percentage of the "lottery tickets" each would receive were they allowed the opportunity to participate in the lot-
tery for the particular game being played. All transactions were automatically recorded.

The lotteries were held after all four games were completed, and each player was informed of the outcomes and the amount of his winnings. A brief explanation of the purpose of the experiment was then given, and the subjects were offered the opportunity to type any comments, questions etc., and were directed to the monitor who paid them.

Results

The 76 games played yielded 72 agreements (95%) of which 71 (99%) were Pareto optimal, so that 93% of the bargaining encounters ended in a Pareto optimal agreement.

Because the players did not know who they were bargaining with and since a different random pairing of the subjects was performed in each session, we shall assume the replication effect due to games to be negligible. This assumption of independence is consistent with the assumptions made by Kahane and Rapoport (1974).

Table 1 gives the means and standard deviations for D. (An outlier in game 3 of the full information condition has been removed.) The zero variance for game 1 precludes conventional analysis. However, games 2, 3, and 4 in the partial information condition were not significantly different from zero, with $t(7) = 0.45$, $t(7) = 1.528$, and $t(7) = 1.722$, respectively. In the full information condition also, game 2 was not significantly different from zero: $t(10) = 0.520$.
Both games 3 and 4 were then compared across information conditions. A t-test was performed yielding a significant difference $t_{(10.28)} = 5.88$, $p < 0.001$ for game 3 and $t_{(10.91)} = 2.76$, $p < 0.02$ for game 4. (The Mann-Whitney U test substantiated this finding.)

T-tests were then performed to compare game 1 with game 3, and game 2 with game 4. In the partial information condition, game 1 was not significantly different from game 3, with $t_{(14)} = -1.53$ and game 2 was not significantly different from game 4, with $t_{(14)} = -1.16$. In the full information condition, however, game 1 was significantly different from game 3 with $t_{(19)} = 5.97$, $p < 0.001$, and game 2 was significantly different from game 4 with $t_{(20)} = -2.56$, $p < 0.02$.

We then compared game 1 to game 2 finding no significant difference in both the full and the partial information conditions with $t_{(20)} = .52$, and $t_{(14)} = -.45$, respectively. Comparison of games 3 and 4 did not yield a significant difference in the full information condition with $t_{(19)} = 1.41$ whereas, in the partial information condition, there was a significant difference with $t_{(14)} = -2.29$, $p < 0.04$.

Thus the results are consistent with the hypothesis that games 3 and 4 in the full information condition are different from all the other games. Inspection of the data in Table 1 also clearly affirms the presence of the predicted effect. (The unaggregated data are given in Table 2.)

Insert Table 2 about here

The high percentage of Pareto optimal agreements lends support to the proposition that the bargaining process observed here can be
described by Nash's property 1, under both information conditions. Nash's property 3, independence of irrelevant alternatives, is descriptive in the full information condition but is not supported in the case of games 3 and 4 of the partial information condition. Under the partial information condition, the similarity of the means for all four games, and the fact that they are not significantly different from zero, support the proposition that the bargaining process under this condition possesses properties 2 and 4. In the full information condition, the differences between the data for games 1 and 3, and the differences between the data for 2 and 4, suggest that comparison of the expected monetary payoffs to each player played a role in determining the agreements reached. Informal examination of the transcripts containing the messages exchanged by the players also support this conclusion. Of the 22 outcomes observed in games 3 and 4 under full information, 19 resulted in agreements and 17 (87%) of these lie between the predictions of Nash's solution and the equal gains solution. The principal hypotheses which the experiment was designed to test are thus supported by the results.

Summary and Conclusions

The principle issue with which this paper has been concerned is the effect which the quality of the information commonly shared by the bargainers has on the outcome of bargaining. We saw that Nash's model of the bargaining process depends primarily on only two of the properties which he proposed, one of which is intimately connected with the assumption that the utility function of a bargainer constitutes the only information available to his opponent about his payoff at any
agreement. A review of the experimental literature showed that, when the utility of the players is taken to be identical to their monetary payoffs, this property is violated.

A new experiment was designed to investigate whether this divergence between the theoretical predictions and the results observed in previous experiments might be due to the fact that the information made available in those experiments differed from the assumptions of Nash's model. By having players bargain over lotteries, it was possible to produce experimental conditions in which the players know one another's utilities. In the partial information condition, this was the only information which each player had about his opponent's payoffs, and so the information shared by the bargainers conformed to the assumptions of Nash's model. The experimental results supported the hypothesis that Nash's solution is descriptive of the bargaining process under this condition. In the full information condition, in which the players knew each others monetary awards as well as their utilities, the results confirmed the hypothesis that, in games where the monetary awards to the players differed, the agreements reached would show a shift in the direction of equal monetary gains.

The full information condition made possible comparison of the expected monetary payoffs each player would receive from any agreement, and the results strongly support the hypothesis that these comparisons played a role in the bargaining process. It was shown that if Nash's property 4 were replaced with a property (4') which permitted such comparisons, then a solution could be derived which predicted agreements in which the players received equal gains. (This could be viewed as
a formal derivation of some of the "equity"-related predictions which have been made in bargaining contexts). Both Nash's property 4 and property 4' are rather extreme, in that 4 permits only the intensity of players' preferences but not comparison of their payoffs to affect the bargaining process, while property 4' allows only for the effect of comparisons but not for the intensity of preferences. Since the full information condition provides the necessary information both for comparisons of payoffs and for judgements about intensity of preferences, it is not too surprising that the results in this condition largely fell between the predictions of Nash's solution and the equal gains solution. This suggests that, in this condition, both kinds of information influenced the bargaining.

This seems likely to be quite a general phenomenon, since even in many conventional bargaining situations, in which the bargainers have no direct knowledge of each others utilities, it is still probable that each bargainer can form some estimate of the intensity of his opponent's preferences over various agreements. The fact that the results of many of the earlier experiments also fall between the predictions of Nash's solution and the equal gains solution tends to bear this out. It may also be the case that bargaining situations in which the bargainers share the most information will also offer the most scope for individual bargaining ability. The variances presented in Table 1 lend support to this hypothesis, since the dispersion of the results is greater under the full information condition than under the partial information condition. Further experimental work will be needed, to explore how different kinds of information are incorporated
into the bargaining process, and how the distribution of this information between the bargainers influences the outcome of bargaining. More sophisticated mathematical models will be needed which are able to deal simultaneously with the different kinds of information available to the bargainers, and to indicate how it may affect different aspects of the bargaining.

Much of the research in the social psychology literature has concentrated on what focal points become "salient" in the course of negotiations. The experimental results presented here, together with the consequences of Properties 4 and 4' as reflected by Nash's solution and the equal gains solution, make it clear that 'salience' in negotiations is dependent on the information shared by the bargainers. Insight into the mechanism by which outcomes become salient in bargaining may shed light on more general questions concerning how mutual expectations are formed in social situations.

A more general conclusion supported by this paper is that game-theoretic models of bargaining provide a powerful theoretical framework, with testable empirical content, and with sufficient flexibility to permit the study of a wide range of bargaining situations. The practice of deriving a solution from its characteristic properties permits the design of experiments which test those properties, and the results of such experiments suggest new properties which, because of the deductive nature of formal mathematical models, permit the derivation of new solutions. There thus appear to be good prospects for considerable interaction between further development of theory and continued experimental investigation in this area.

M/C/114
Footnotes

1. A more complete and technical account of this subject is to be found in a forthcoming monograph (Roth; 1979b).

2. Although there is experimental evidence (e.g. Tversky, 1969) that individuals' preferences may not always obey the conditions necessary for them to be modelled by a utility function, these conditions still retain normative significance. Furthermore, the violations of these conditions have generally been observed in multi-attribute decision situations, rather than in decisions involving a single commodity (e.g. money), of the sort involved in the experiments to be considered here.

3. This is a standard assumption in game theory, referred to as the assumption of "complete information."

4. A convex set of vectors is one which contains any weighted average of any two elements. Since the utility of a lottery is its expected utility (i.e. the weighted average of the utilities over which the lottery is conducted), S is convex if lotteries are feasible.

5. The distinction between "full" and "partial" information made here should not be confused with the technical game-theoretic terms "complete" and "incomplete" information (cf. footnote 3), or "perfect" and "imperfect" information.
6. Further investigations by Crott and his co-workers into various aspects of bargaining are reported in Crott (1972b), and in Crott et al. (1974, 1976, 1978). These studies fall outside the scope of this review, but they are mentioned here for completeness, since they have not been included in the reviews of the English-language literature.

7. Heckathorn refers to Raiffa's solution as the "Smorodinsky-Kalai" solution.

8. An alternative approach is investigated by Kalai (1977b), Meyerson (1977), and Roth (1979a). These and other related approaches are considered in Roth (1979b).

9. That is, knowing a player's monetary payoffs does not permit his utility function to be known, except in the special case in which his utility is known to be linear in money. Even in this case, however, knowing his monetary payoffs conveys additional information, not conveyed by his utility function alone.

10. An alternative approach (particularly in the full information condition) would have been to try to assess the utility of each player for all possible divisions of the lottery tickets; i.e., to incorporate into the utility functions each player's preferences for his standing relative to his opponent, as well as for the monetary payoff which he receives himself. In this particular experiment, this would have no effect on the utility functions of the players for any potential Pareto-optimal agreement, so long as each player
prefers, of any two agreements, the one which gives him the higher percentage of lottery tickets. (This is because each agreement is a lottery between the same two outcomes—the most preferred and the least preferred Pareto-optimal agreements.) However, there could, in general, be an effect on the utility of the players for the disagreement outcome and for the non-Pareto-optimal agreements. However, for the reasons indicated, we will consider the set of feasible utilities associated with each game to be defined by each player's utility for money.

11. Due to the unequal variances in the two samples, a non-integer d.f. is reported.
Appendix: Proof of Theorem 4

Theorem 4: The equal gains solution E is the unique solution which is strongly individually rational, strongly Pareto optimal, independent of irrelevant alternatives, and independent of ordinal transformations preserving interpersonal comparisons.

Proof: It is straightforward to verify that the solution E is well-defined and possesses the properties specified by the theorem. We need to show that it is the unique solution with those properties; i.e., that if f is a solution possessing the specified properties, then $f(S, d) = E(S, d)$ for any (S, d) in B^*. For any game (S, d), let $P(S)$ denote the Pareto optimal subset of S, and let $S^+_d = \{x \in S | x \geq d\}$ be the individually rational subset of S.

First observe that if f is individually rational, strongly Pareto optimal, and independent of irrelevant alternatives, then for any $(S, d) \in B^*$, $f(S, d) = f(T, d)$ where $T = P(S^+_d) \cup \{d\}$. (This follows since individual rationality implies that $f(S, d) \in S^+_d = \{x \in S | x \geq d\}$, strong Pareto optimality implies $f(S, d) \in P(S^+_d)$, and so independence of irrelevant alternatives implies $f(S, d) = f(T, d)$ for any subset T of S which contains $P(S^+_d)$.) We will sometimes denote the game (T, d) by $(P(S^+_d), d)$, which is a slight abuse of our notation, since $d \in P(S^+_d)$. However it will be understood that in this case the set of feasible payoff vectors is $P(S^+_d) \cup \{d\}$. So it will be sufficient to show that f and E coincide on games of the form $(P(S^+_d), d)$, and Property 1 further insures that it will be sufficient to show this when $d = (0, 0) = \overline{0}$.

Let \overline{A} be the convex hull of the points $(2, 0); (0, 2)$; and $\overline{0}$; we will show that $f(\overline{A}) = E(\overline{A}) = (1, 1)$, (where $\overline{P}(\overline{A})$ is of course the line segment joining the points $(2, 0)$ and $(0, 2)$). To show this it
is sufficient to note that the set \(\overline{P}(\mathbb{A}) \cup \{0\} \) can be mapped into itself by the transformation \(t = (t_1, t_2) \) given by

\[
t_1(x_1, x_2) = \begin{cases}
2x_1/(1 + x_1) & \text{for } 0 \leq x_1 \leq x_2 \\
x_1 + x_2 - t_2(x_1, x_2) & \text{for } 0 \leq x_2 < x_1
\end{cases}
\]

\[
t_2(x_1, x_2) = \begin{cases}
x_1 + x_2 - t_1(x_1, x_2) & \text{for } 0 \leq x_1 \leq x_2 \\
2x_2/(1 + x_2) & \text{for } 0 \leq x_2 < x_1
\end{cases}
\]

This transformation \(t \) defined on the set \(\overline{P}(\mathbb{A}) \cup \{0\} \) satisfies the conditions of Property 1' and leaves only the points \(0, (2,0), (1,1), \) and \((0,2) \) fixed. But since \(t \) transforms the game \((\overline{P}(\mathbb{A}), \overline{0}) \) into itself, Property 2' requires that \(f(\overline{P}(\mathbb{A}), \overline{0}) = t(f(\overline{P}(\mathbb{A}), \overline{0})) \); i.e., \(f(\overline{P}(\mathbb{A}), \overline{0}) \) must be a fixed point of \(t \). The unique fixed point of \(t \) in \(\overline{P}(\mathbb{A}) \) which is strongly individually rational is the point \((1,1) \), and so \(f(\overline{P}(\mathbb{A}), \overline{0}) = (1,1) \), as required.

Next, observe that it will be sufficient for our proof to show that \(f \) and \(E \) coincide on games \((\overline{P}(S^+), \overline{0}) \) such that \(\overline{P}(S) \) is a subset of \(\overline{P}(\mathbb{A}) \). To see this, consider an arbitrary game of the form \((\overline{P}(S^+), \overline{0}) \), and let \((\overline{P}(T), \overline{0}) \) be a game such that \(\overline{P}(T) \) contains \(\overline{P}(S) \), and \(\overline{P}(T) = \{(x_1, \phi(x_1)) | 0 \leq x_1 \leq \bar{x}_1\} \) where \(\phi \) is a continuous decreasing function such that \(\phi(\bar{x}_1) = 0 \). (Thus \(\overline{P}(T) \) touches both axes; i.e., it contains points of the form \((0, \bar{x}_2)\) and \((\bar{x}_1, 0)\).) Then there is a (unique) point \(x^* \) in \(\overline{P}(T) \) which gives the players equal gains; let \(x^* = (c, c) \), where \(c \) is a positive real number. The transformation \(t = (t_1, t_2) \) given by
\[t_1(x_1, x_2) = \begin{cases} x_1 & \text{for } 0 \leq x_1 \leq c \\ 2c - x_2 & \text{otherwise} \end{cases} \]
\[t_2(x_1, x_2) = \begin{cases} 2c - x_1 & \text{for } 0 \leq x_1 \leq c \\ x_2 & \text{otherwise} \end{cases} \]

transforms the game \((\overline{P}(T), \overline{u})\) into the game \((c\overline{P}(\overline{A}), \overline{u})\). So the transformation \(t' = t/c\) transforms \((\overline{P}(T), \overline{u})\) into \((\overline{P}(\overline{A}), \overline{u})\), and thus transforms the arbitrary game \((\overline{P}(S^+), \overline{u})\) into a game whose strong Pareto set is a subset of \(\overline{P}(\overline{A})\). Property \(4'\) thus assures that if \(f\) and \(E\) coincide on subsets of \(\overline{P}(\overline{A})\) then they coincide everywhere.

But if \(\overline{P}(S)\) is a subset of \(\overline{P}(\overline{A})\) which contains the point \(f(\overline{P}(\overline{A}), \overline{u}) = (1,1)\), then independence of irrelevant alternatives implies \(f(\overline{P}(S), \overline{u}) = (1,1)\) as well. If \((1,1)\) is not an element of \(\overline{P}(S)\) then \(\overline{P}(S)\) is contained either in a line segment joining \((0,2)\) to \(x = (\overline{x}_1, \overline{x}_2)\) such that \(x\) maximizes player 1's payoff in \(\overline{P}(S)\) and \(\overline{x}_1 < \overline{x}_2\), or else in a line segment joining \((2,0)\) to the point \(x = (x_1, \overline{x}_2)\) which maximizes player 2's payoff, and for which \(\overline{x}_2 < x_1\).

But either of these line segments can be transformed into itself leaving only its endpoints fixed, so that Property \(4'\) together with independence of irrelevant alternatives and strong individual rationality implies that \(f(\overline{P}(S), \overline{u}) = x = E(\overline{P}(S), \overline{u})\), which completes the proof.
REFERENCES

Rapoport, Anatol, Melvin J. Guyer, and David G. Gordon, [1976], The 2x2 Game, University of Michigan Press, Ann Arbor.

<table>
<thead>
<tr>
<th>Game</th>
<th>Prize for Player 1</th>
<th>Prize for Player 2</th>
<th>Allowed Player 1</th>
<th>Allowed Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game 1</td>
<td>$1.00</td>
<td>$1.00</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Game 2</td>
<td>$1.00</td>
<td>$1.00</td>
<td>100%</td>
<td>60%</td>
</tr>
<tr>
<td>Game 3</td>
<td>$1.25</td>
<td>$3.75</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Game 4</td>
<td>$1.25</td>
<td>$3.75</td>
<td>100%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Figure 1

The prizes and feasible distributions for games 1-4
TABLE 1
Means and Standard Deviations for D.

<table>
<thead>
<tr>
<th></th>
<th>GAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Full</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>(11 pairs)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Partial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>(8 pairs)</td>
<td>(0.0)</td>
</tr>
</tbody>
</table>

* The mean and standard deviation are reported after the removal of an outlier (D = +98 resulting from a (1,99) agreement) which is 6.8 standard deviations from the mean.
TABLE 2

Percentage of Lottery Tickets

<table>
<thead>
<tr>
<th>GAME#</th>
<th>GROUP#</th>
<th>1</th>
<th>2</th>
<th>D</th>
<th>GROUP#</th>
<th>1</th>
<th>2</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td>2</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td>4</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td>6</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td>8</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td>2</td>
<td>1</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>40.00</td>
<td>60.00</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td>4</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>49.70</td>
<td>50.30</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68.00</td>
<td>32.00</td>
<td>-36.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.00</td>
<td>40.00</td>
<td>15.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>55.00</td>
<td>45.00</td>
<td>-10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>73.00</td>
<td>27.00</td>
<td>-46.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>99.00</td>
<td>98.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.00</td>
<td>35.00</td>
<td>-30.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45.00</td>
<td>55.00</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70.00</td>
<td>30.00</td>
<td>-40.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75.00</td>
<td>25.00</td>
<td>-50.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70.00</td>
<td>30.00</td>
<td>-40.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>75.00</td>
<td>25.00</td>
<td>-50.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70.00</td>
<td>30.00</td>
<td>-40.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>75.00</td>
<td>25.00</td>
<td>-50.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>75.00</td>
<td>25.00</td>
<td>-50.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55.00</td>
<td>45.00</td>
<td>-10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6</td>
<td>55.00</td>
<td>45.00</td>
<td>-10.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60.00</td>
<td>40.00</td>
<td>-20.00</td>
<td></td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>80.00</td>
<td>20.00</td>
<td>-60.00</td>
<td>8</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60.00</td>
<td>40.00</td>
<td>-20.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>65.00</td>
<td>35.00</td>
<td>-30.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>